Evolutionary Optimization of High-Dimensional Multiobjective and Many-Objective Expensive Problems Assisted by a Dropout Neural Network
نویسندگان
چکیده
Gaussian processes (GPs) are widely used in surrogate-assisted evolutionary optimization of expensive problems mainly due to the ability provide a confidence level their outputs, making it possible adopt principled surrogate management methods, such as acquisition function Bayesian optimization. Unfortunately, GPs become less practical for high-dimensional multiobjective and many-objective computational complexity is cubic number training samples. In this article, we propose computationally efficient dropout neural network (EDN) replace process new model strategy achieve good balance between convergence diversity assisting algorithms solve problems. While conventional needs save large models during calculating level, only one single needed EDN estimate fitness its by randomly ignoring neurons both testing network. Extensive experimental studies on benchmark with up 100 decision variables 20 objectives demonstrate that, compared state art, proposed algorithm not highly competitive performance but also more scalable Finally, validated an operational problem crude oil distillation units, further confirming capability handling given limited budget.
منابع مشابه
Artificial Neural Network Based Multi-Objective Evolutionary Optimization of a Heavy-Duty Diesel Engine
In this study the performance and emissions characteristics of a heavy-duty, direct injection, Compression ignition (CI) engine which is specialized in agriculture, have been investigated experimentally. For this aim, the influence of injection timing, load, engine speed on power, brake specific fuel consumption (BSFC), peak pressure (PP), nitrogen oxides (NOx), carbon dioxide (CO2), Carbon mon...
متن کاملsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
A New Evolutionary Decision Theory for Many-Objective Optimization Problems
In this paper the authors point out that the Pareto Optimality is unfair, unreasonable and imperfect for Many-objective Optimization Problems (MOPs) underlying the hypothesis that all objectives have equal importance. The key contribution of this paper is the discovery of the new definition of optimality called ε-optimality for MOP that is based on a new conception, so called ε-dominance, which...
متن کاملOn Constraint Handling in Surrogate-Assisted Evolutionary Many-Objective Optimization
Surrogate-assisted evolutionary multiobjective optimization algorithms are often used to solve computationally expensive problems. But their efficacy on handling constrained optimization problems having more than three objectives has not been widely studied. Particularly the issue of how feasible and infeasible solutions are handled in generating a data set for training a surrogate has not rece...
متن کاملIGD Indicator-based Evolutionary Algorithm for Many-objective Optimization Problems
Inverted Generational Distance (IGD) has been widely considered as a reliable performance indicator to concurrently quantify the convergence and diversity of multiand manyobjective evolutionary algorithms. In this paper, an IGD indicatorbased evolutionary algorithm for solving many-objective optimization problems (MaOPs) has been proposed. Specifically, the IGD indicator is employed in each gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE transactions on systems, man, and cybernetics
سال: 2022
ISSN: ['1083-4427', '1558-2426']
DOI: https://doi.org/10.1109/tsmc.2020.3044418